

 Navigation

 	
 next

 	Shiboken 1.1.2 documentation

Table of contents

	1. Frequently Asked Questions
	1.1. General
	1.1.1. What is Shiboken?

	1.1.2. Why did you switch from Boost.Python to Shiboken?

	1.2. Creating bindings
	1.2.1. Can I wrap non-Qt libraries?

	1.2.2. Is there any runtime dependency on the generated binding?

	1.2.3. What do I have to do to create my bindings?

	1.2.4. Is there any recommended build system?

	1.2.5. Can I write closed-source bindings with the generator?

	1.2.6. What is ‘inject code’?

	2. Generator Overview
	2.1. Creating new bindings

	2.2. Handwritten inputs

	3. Command line options
	3.1. Usage

	3.2. Options

	4. Binding Project File
	4.1. The project file structure

	4.2. Project file tags

	5. Type System Variables
	5.1. Variables

	5.2. Example

	6. User Defined Type Conversion
	6.1. Container Conversions

	6.2. Variables & Functions

	6.3. Converting The Old Converters

	7. Code Injection Semantics
	7.1. Conventions

	7.2. inject-code tag

	7.3. Anatomy of Code Injection
	7.3.1. Noteworthy Cases

	7.4. Code Injection for Functions/Methods
	7.4.1. On The Native Side

	7.4.2. On The Target Side

	7.5. Code Injection for Wrapped Classes
	7.5.1. On The Native Side

	7.5.2. On The Target Side

	7.6. Code Injection for Modules
	7.6.1. On The Native Side

	7.6.2. On The Target Side

	8. Sequence Protocol

	9. Object ownership
	9.1. Ownership basics

	9.2. Invalidating objects
	9.2.1. C++ taking ownership

	9.2.2. Invalidate after use

	9.2.3. Objects with virtual methods

	9.3. Parent-child relationship
	9.3.1. Parentship heuristics

	9.3.2. Return value heuristics

	9.4. Common pitfalls
	9.4.1. Not saving unowned objects references

	10. Words of Advice
	10.1. Duck punching and virtual methods

	10.2. Python old style classes and PySide

	11. Shiboken module
	11.1. Functions

	11.2. Detailed description

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

1. Frequently Asked Questions

This is a list of Frequently Asked Questions about Shiboken. Feel free to
suggest new entries!

1.1. General

1.1.1. What is Shiboken?

Shiboken is a GeneratorRunner [http://www.pyside.org/home-binding/binding-generator]
plugin that outputs C++ code for CPython extensions. The first version of PySide
had source code based on Boost templates. It was easier to produce code but a
paradigm change was needed, as the next question explains.

1.1.2. Why did you switch from Boost.Python to Shiboken?

The main reason was the size reduction. Boost.Python makes excessive use of templates
resulting in a significant increase of the binaries size. On the other hand, as Shiboken
generates CPython code, the resulting binaries are smaller.

1.2. Creating bindings

1.2.1. Can I wrap non-Qt libraries?

Yes. Check Shiboken source code for an example (libsample).

1.2.2. Is there any runtime dependency on the generated binding?

Yes. Only libshiboken, and the obvious Python interpreter
and the C++ library that is being wrapped.

1.2.3. What do I have to do to create my bindings?

Most of the work is already done by the API Extractor. The developer creates
a typesystem [http://www.pyside.org/docs/apiextractor/typesystem.html] file
with any customization wanted in the generated code, like removing classes or
changing method signatures. The generator will output the .h and .cpp files
with the CPython code that will wrap the target library for python.

1.2.4. Is there any recommended build system?

Both API Extractor and generator uses and recommends the CMake build system.

1.2.5. Can I write closed-source bindings with the generator?

Yes, as long as you use a LGPL version of Qt, due to runtime requirements.

1.2.6. What is ‘inject code’?

That’s how we call customized code that will be injected into the
generated at specific locations. They are specified inside the typesytem.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

2. Generator Overview

In a few words, the Generator is a utility that parses a collection of header and
typesystem files, generating other files (code, documentation, etc.) as result.

2.1. Creating new bindings

[image: _images/bindinggen-development.png]
Creating new bindings

Each module of the generator system has an specific role.

	Provide enough data about the classes and functions.

	Generate valid code, with modifications from typesystems and injected codes.

	Modify the API to expose the objects in a way that fits you target language best.

	Insert customizations where handwritten code is needed.

[image: _images/boostqtarch.png]
Runtime architecture

The newly created binding will run on top of Boost.Python library which takes
care of interfacing Python and the underlying C++ library.

2.2. Handwritten inputs

Creating new bindings involves creating two pieces of “code”: the typesystem and
the inject code.

	typesystem:	XML files that provides the developer with a tool to customize the
way that the generators will see the classes and functions. For
example, functions can be renamed, have its signature changed and
many other actions.

	inject code:	allows the developer to insert handwritten code where the generated
code is not suitable or needs some customization.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

3. Command line options

3.1. Usage

shiboken [options] header-file typesystem-file

3.2. Options

	--disable-verbose-error-messages

	Disable verbose error messages. Turn the CPython code hard to debug but saves a few kilobytes
in the generated binding.

	--enable-parent-ctor-heuristic

	This flag enable an useful heuristic which can save a lot of work related to object ownership when
writing the typesystem.
For more info, check Parentship heuristics.

	--enable-pyside-extensions

	Enable pyside extensions like support for signal/slots. Use this if you are creating a binding based
on PySide.

	--enable-return-value-heuristic

	Enable heuristics to detect parent relationship on return values.
For more info, check Return value heuristics.

	--api-version=<version>

	Specify the supported api version used to generate the bindings.

	--debug-level=[sparse|medium|full]

	Set the debug level.

	--documentation-only

	Do not generate any code, just the documentation.

	--drop-type-entries="<TypeEntry0>[;TypeEntry1;...]"

	Semicolon separated list of type system entries (classes, namespaces,
global functions and enums) to be dropped from generation.

	--generation-set

	Generator set to be used (e.g. qtdoc).

	--help

	Display this help and exit.

	--include-paths=<path>[:<path>:...]

	Include paths used by the C++ parser.

	--license-file=[license-file]

	File used for copyright headers of generated files.

	--no-suppress-warnings

	Show all warnings.

	--output-directory=[dir]

	The directory where the generated files will be written.

	--silent

	Avoid printing any message.

	--typesystem-paths=<path>[:<path>:...]

	Paths used when searching for type system files.

	--version

	Output version information and exit.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

4. Binding Project File

Instead of directing the Generator behaviour via command line, the binding developer
can write a text project file describing the same information, and avoid the hassle
of a long stream of command line arguments.

4.1. The project file structure

Here follows a comprehensive example of a generator project file.

[generator-project]
generator-set = path/to/generator/CHOICE_GENERATOR
header-file = DIR/global.h" />
typesystem-file = DIR/typesystem_for_your_binding.xml
output-directory location="OUTPUTDIR" />
include-path = path/to/library/being/wrapped/headers/1
include-path = path/to/library/being/wrapped/headers/2
typesystem-path = path/to/directory/containing/type/system/files/1
typesystem-path = path/to/directory/containing/type/system/files/2
enable-parent-ctor-heuristic

4.2. Project file tags

The generator project file tags are in direct relation to the
command line arguments. All of the current command line
options provided by Shiboken were already seen on the The project file structure,
for new command line options provided by additional generator modules (e.g.: qtdoc,
Shiboken) could also be used in the generator project file following simple conversion rules.

For tags without options, just write as an empty tag without any attributes. Example:

--BOOLEAN-ARGUMENT

becomes

BOOLEAN-ARGUMENT

and

--VALUE-ARGUMENT=VALUE

becomes

VALUE-ARGUMENT = VALUE

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

5. Type System Variables

User written code can be placed in arbitrary places using the
inject-code tag. To ease the binding developer
work, the injected code can make use of special variables that will be replaced
by the correct values. This also shields the developer from some Shiboken
implementation specifics.

5.1. Variables

%0

Replaced by the C++ return variable of the Python method/function wrapper.

%#

Replaced by the name of a C++ argument in the position indicated by #.
The argument counting starts with %1, since %0 represents the return
variable name. If the number indicates a variable that was removed in the
type system description, but there is a default value for it, this value will
be used. Consider this example:

void argRemoval(int a0, int a1 = 123);

<modify-function signature="argRemoval(int, int)">
 <modify-argument index="2">
 <remove-argument/>
 </modify-argument>
</modify-function>

The %1 will be replaced by the C++ argument name, and %2 will get the
value 123.

%ARGUMENT_NAMES

Replaced by a comma separated list with the names of all C++ arguments that
were not removed on the type system description for the method/function. When
the removed argument has a default value (original or provided in the type
system), this value will be inserted in the argument list. If you want to remove
the argument so completely that it doesn’t appear in any form on the
%ARGUMENT_NAMES replacement, don’t forget to remove also its default value
with the <remove-default-expression/> [http://www.pyside.org/docs/apiextractor/typesystem_arguments.html#remove-default-expression]
type system tag.

Take the following method and related type system description as an example:

void argRemoval(int a0, Point a1 = Point(1, 2), bool a2 = true, Point a3 = Point(3, 4), int a4 = 56);

<modify-function signature="argRemoval(int, Point, bool, Point, int)">
 <modify-argument index="2">
 <remove-argument/>
 <replace-default-expression with="Point(6, 9)"/>
 </modify-argument>
 <modify-argument index="4">
 <remove-argument/>
 </modify-argument>
</modify-function>

As seen on the XML description, the function’s a1 and a3 arguments
were removed. If any inject-code for this function uses %ARGUMENT_NAMES
the resulting list will be the equivalent of using individual argument type
system variables this way:

%1, Point(6, 9), %3, Point(3, 4), %5

%ARG#_TYPE

Replaced by the type of a C++ argument in the position indicated by #.
The argument counting starts with %1, since %0 represents the return
variable in other contexts, but %ARG0_TYPE will not translate to the
return type, as this is already done by the
%RETURN_TYPE variable.
Example:

void argRemoval(int a0, int a1 = 123);

<modify-function signature="argRemoval(int, int)">
 <modify-argument index="2">
 <remove-argument/>
 </modify-argument>
</modify-function>

The %1 will be replaced by the C++ argument name, and %2 will get the
value 123.

%CONVERTTOCPP[CPPTYPE]

Replaced by a Shiboken conversion call that converts a Python variable
to a C++ variable of the type indicated by CPPTYPE.

%CONVERTTOPYTHON[CPPTYPE]

Replaced by a Shiboken conversion call that converts a C++ variable of the
type indicated by CPPTYPE to the proper Python object.

%ISCONVERTIBLE[CPPTYPE]

Replaced by a Shiboken “isConvertible” call that checks if a Python
variable is convertible (via an implicit conversion or cast operator call)
to a C++ variable of the type indicated by CPPTYPE.

%CHECKTYPE[CPPTYPE]

Replaced by a Shiboken “checkType” call that verifies if a Python
if of the type indicated by CPPTYPE.

%CPPSELF

Replaced by the wrapped C++ object instance that owns the method in which the
code with this variable was inserted.

%CPPTYPE

Replaced by the original name of the C++ class, without any namespace prefix,
that owns the method in which the code with this variable was inserted. It will
work on class level code injections also. Notice that CPPTYPE differs from
the %TYPE variable, for this latter may be translated to the original
C++ class name or to the C++ wrapper class name.

Namespaces will are treated as classes, so CPPTYPE will work for them and their
enclosed functions as well.

%FUNCTION_NAME

Replaced by the name of a function or method.

%PYARG_0

Replaced by the name of the Python return variable of the Python method/function wrapper.

%PYARG_#

Similar to %#, but is replaced by the Python arguments (PyObjects)
received by the Python wrapper method.

If used in the context of a native code injection, i.e. in a virtual method
override, %PYARG_# will be translated to one item of the Python tuple
holding the arguments that should be passed to the Python override for this
virtual method.

The example

long a = PyInt_AS_LONG(%PYARG_1);

is equivalent of

long a = PyInt_AS_LONG(PyTuple_GET_ITEM(%PYTHON_ARGUMENTS, 0));

The generator tries to be smart with attributions, but it will work for the
only simplest cases.

This example

Py_DECREF(%PYARG_1);
%PYARG_1 = PyInt_FromLong(10);

is equivalent of

Py_DECREF(PyTuple_GET_ITEM(%PYTHON_ARGUMENTS, 0));
PyTuple_SET_ITEM(%PYTHON_ARGUMENTS, 0, PyInt_FromLong(10));

%PYSELF

Replaced by the Python wrapper variable (a PyObject) representing the instance
bounded to the Python wrapper method which receives the custom code.

%PYTHON_ARGUMENTS

Replaced by the pointer to the Python tuple with Python objects converted from
the C++ arguments received on the binding override of a virtual method.
This tuple is the same passed as arguments to the Python method overriding the
C++ parent’s one.

%PYTHON_METHOD_OVERRIDE

This variable is used only on native method code injections, i.e. on the binding overrides for C++ virtual
methods. It is replaced by a pointer to the Python method override.

%PYTHONTYPEOBJECT

Replaced by the Python type object for the context in which it is inserted:
method or class modification.

%BEGIN_ALLOW_THREADS

Replaced by a thread state saving procedure.
Must match with a %END_ALLOW_THREADS variable.

%END_ALLOW_THREADS

Replaced by a thread state restoring procedure.
Must match with a %BEGIN_ALLOW_THREADS variable.

%RETURN_TYPE

Replaced by the type returned by a function or method.

%TYPE

Replaced by the name of the class to which a function belongs. May be used
in code injected at method or class level.

5.2. Example

Just to illustrate the usage of the variables described in the previous
sections, below is an excerpt from the type system description of a Shiboken
test. It changes a method that received argc/argv arguments into something
that expects a Python sequence instead.

<modify-function signature="overloadedMethod(int, char**)">
 <modify-argument index="1">
 <replace-type modified-type="PySequence" />
 </modify-argument>
 <modify-argument index="2">
 <remove-argument />
 </modify-argument>
 <inject-code class="target" position="beginning">
 int argc;
 char** argv;
 if (!PySequence_to_argc_argv(%PYARG_1, &argc, &argv)) {
 PyErr_SetString(PyExc_TypeError, "error");
 return 0;
 }
 %RETURN_TYPE foo = %CPPSELF.%FUNCTION_NAME(argc, argv);
 %0 = %CONVERTTOPYTHON[%RETURN_TYPE](foo);

 for (int i = 0; i < argc; ++i)
 delete[] argv[i];
 delete[] argv;
 </inject-code>
</modify-function>

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

6. User Defined Type Conversion

In the process of creating Python bindings of a C++ library, most of the C++ classes will have wrappers representing them in Python land. But there may be other classes that are very simple and/or have a Python type as a direct counter part. (Example: a “Complex” class, that represents complex numbers, has a Python equivalent in the “complex” type.) Such classes, instead of getting a Python wrapper, normally have conversions rules, from Python to C++ and vice-versa.

// C++ class
struct Complex {
 Complex(double real, double imag);
 double real() const;
 double imag() const;
};

// Converting from C++ to Python using the CPython API:
PyObject* pyCpxObj = PyComplex_FromDoubles(complex.real(), complex.imag());

// Converting from Python to C++:
double real = PyComplex_RealAsDouble(pyCpxObj);
double imag = PyComplex_ImagAsDouble(pyCpxObj);
Complex cpx(real, imag);

For the user defined conversion code to be inserted in the proper places, the “<conversion-rule>” tag must be used.

<primitive-type name="Complex" target-lang-api-name="PyComplex">
 <include file-name="complex.h" location="global"/>

 <conversion-rule>

 <native-to-target>
 return PyComplex_FromDoubles(%in.real(), %in.imag());
 </native-to-target>

 <target-to-native>
 <!-- The 'check' attribute can be derived from the 'type' attribute,
 it is defined here to test the CHECKTYPE type system variable. -->
 <add-conversion type="PyComplex" check="%CHECKTYPE[Complex](%in)">
 double real = PyComplex_RealAsDouble(%in);
 double imag = PyComplex_ImagAsDouble(%in);
 %out = %OUTTYPE(real, imag);
 </add-conversion>
 </target-to-native>

 </conversion-rule>

</primitive-type>

The details will be given later, but the gist of it are the tags
<native-to-target> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#native-to-target],
which has only one conversion from C++ to Python, and
<target-to-native> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#target-to-native],
that may define the conversion of multiple Python types to C++’s “Complex” type.

[image: _images/converter.png]
Shiboken expects the code for <native-to-target> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#native-to-target],
to directly return the Python result of the conversion, and the added conversions inside the
<target-to-native> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#target-to-native]
must attribute the Python to C++ conversion result to the %out variable.

Expanding on the last example, if the binding developer want a Python 2-tuple of numbers to be accepted
by wrapped C++ functions with “Complex” arguments, an
<add-conversion> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#add-conversion]
tag and a custom check must be added. Here’s how to do it:

<!-- Code injection at module level. -->
<inject-code class="native" position="beginning">
static bool Check2TupleOfNumbers(PyObject* pyIn) {
 if (!PySequence_Check(pyIn) || !(PySequence_Size(pyIn) == 2))
 return false;
 Shiboken::AutoDecRef pyReal(PySequence_GetItem(pyIn, 0));
 if (!SbkNumber_Check(pyReal))
 return false;
 Shiboken::AutoDecRef pyImag(PySequence_GetItem(pyIn, 1));
 if (!SbkNumber_Check(pyImag))
 return false;
 return true;
}
</inject-code>

<primitive-type name="Complex" target-lang-api-name="PyComplex">
 <include file-name="complex.h" location="global"/>

 <conversion-rule>

 <native-to-target>
 return PyComplex_FromDoubles(%in.real(), %in.imag());
 </native-to-target>

 <target-to-native>

 <add-conversion type="PyComplex">
 double real = PyComplex_RealAsDouble(%in);
 double imag = PyComplex_ImagAsDouble(%in);
 %out = %OUTTYPE(real, imag);
 </add-conversion>

 <add-conversion type="PySequence" check="Check2TupleOfNumbers(%in)">
 Shiboken::AutoDecRef pyReal(PySequence_GetItem(%in, 0));
 Shiboken::AutoDecRef pyImag(PySequence_GetItem(%in, 1));
 double real = %CONVERTTOCPP[double](pyReal);
 double imag = %CONVERTTOCPP[double](pyImag);
 %out = %OUTTYPE(real, imag);
 </add-conversion>

 </target-to-native>

 </conversion-rule>

</primitive-type>

6.1. Container Conversions

Converters for
<container-type> [http://www.pyside.org/docs/apiextractor/typesystem_specifying_types.html#container-type]
are pretty much the same as for other type, except that they make use of the type system variables
%INTYPE_# and %OUTTYPE_#. Shiboken combines the conversion code for
containers with the conversion defined (or automatically generated) for the containees.

<container-type name="std::map" type="map">
 <include file-name="map" location="global"/>

 <conversion-rule>

 <native-to-target>
 PyObject* %out = PyDict_New();
 %INTYPE::const_iterator it = %in.begin();
 for (; it != %in.end(); ++it) {
 %INTYPE_0 key = it->first;
 %INTYPE_1 value = it->second;
 PyDict_SetItem(%out,
 %CONVERTTOPYTHON[%INTYPE_0](key),
 %CONVERTTOPYTHON[%INTYPE_1](value));
 }
 return %out;
 </native-to-target>

 <target-to-native>

 <add-conversion type="PyDict">
 PyObject* key;
 PyObject* value;
 Py_ssize_t pos = 0;
 while (PyDict_Next(%in, &pos, &key, &value)) {
 %OUTTYPE_0 cppKey = %CONVERTTOCPP[%OUTTYPE_0](key);
 %OUTTYPE_1 cppValue = %CONVERTTOCPP[%OUTTYPE_1](value);
 %out.insert(%OUTTYPE::value_type(cppKey, cppValue));
 }
 </add-conversion>

 </target-to-native>
 </conversion-rule>
</container-type>

6.2. Variables & Functions

%in

Variable replaced by the C++ input variable.

%out

Variable replaced by the C++ output variable. Needed to convey the
result of a Python to C++ conversion.

%INTYPE

Used in Python to C++ conversions. It is replaced by the name of type for
which the conversion is being defined. Don’t use the type’s name directly.

%INTYPE_#

Replaced by the name of the #th type used in a container.

%OUTTYPE

Used in Python to C++ conversions. It is replaced by the name of type for
which the conversion is being defined. Don’t use the type’s name directly.

%OUTTYPE_#

Replaced by the name of the #th type used in a container.

%CHECKTYPE[CPPTYPE]

Replaced by a Shiboken type checking function for a Python variable.
The C++ type is indicated by CPPTYPE.

6.3. Converting The Old Converters

If you use Shiboken for your bindings, and has defined some type conversions
using the Shiboken::Converter template, then you must update your converters
to the new scheme.

Previously your conversion rules were declared in one line, like this:

<primitive-type name="Complex" target-lang-api-name="PyComplex">
 <include file-name="complex.h" location="global"/>
 <conversion-rule file="complex_conversions.h"/>
</primitive-type>

And implemented in a separate C++ file, like this:

namespace Shiboken {
template<> struct Converter<Complex>
{
 static inline bool checkType(PyObject* pyObj) {
 return PyComplex_Check(pyObj);
 }
 static inline bool isConvertible(PyObject* pyObj) {
 return PyComplex_Check(pyObj);
 }
 static inline PyObject* toPython(void* cppobj) {
 return toPython(*reinterpret_cast<Complex*>(cppobj));
 }
 static inline PyObject* toPython(const Complex& cpx) {
 return PyComplex_FromDoubles(cpx.real(), cpx.imag());
 }
 static inline Complex toCpp(PyObject* pyobj) {
 double real = PyComplex_RealAsDouble(pyobj);
 double imag = PyComplex_ImagAsDouble(pyobj);
 return Complex(real, imag);
 }
};
}

In this case, the parts of the implementation that will be used in the new conversion-rule
are the ones in the two last method static inline PyObject* toPython(const Complex& cpx)
and static inline Complex toCpp(PyObject* pyobj). The isConvertible method is gone,
and the checkType is now an attribute of the
<add-conversion> [http://www.pyside.org/docs/apiextractor/typesystem_conversionrule.html#add-conversion]
tag. Refer back to the first example in this page and you will be able to correlate the above template
with the new scheme of conversion rule definition.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

7. Code Injection Semantics

API Extractor provides the inject-code [http://www.pyside.org/docs/apiextractor/typesystem_manipulating_objects.html#inject-code] tag
allowing the user to put custom written code to on specific locations of the generated code.
Yet this is only part of what is needed to generate proper binding code, where the custom code
should be written to depends upon the technology used on the generated binding code.

This is the inject-code tag options that matters to Shiboken.

<inject-code class="native | target" position="beginning | end">
 // custom code
</inject-code>

7.1. Conventions

	C++ Wrapper

	This term refers to a generated C++ class that extends a class from the
wrapped library. It is used only when a wrapped C++ class is polymorphic,
i.e. it has or inherits any virtual methods.

	Python Wrapper

	The code that exports the C++ wrapped class to Python. Python wrapper
refers to all the code needed to export a C++ class to Python, and
Python method/function wrapper means the specific function that calls
the C++ method/function on behalf of Python.

	Native

	This is a possible value for the class attribute of the inject-code
tag, it means things more akin to the C++ side.

	Target

	Another class attribute value, it indicates things more close to the
Python side.

7.2. inject-code tag

The following table describes the semantics of inject-code tag as used on
Shiboken.

	Parent Tag
	Class
	Position
	Meaning

	value-type,
object-type
	native
	beginning
	Write to the beginning of a class wrapper .cpp file, right
after the #include clauses. A common use would be to write
prototypes for custom functions whose definitions are put on a
native/end code injection.

	end
	Write to the end of a class wrapper .cpp file. Could be
used to write custom/helper functions definitions for
prototypes declared on native/beginning.

	target
	beginning
	Put custom code on the beginning of the wrapper initializer
function (init_CLASS(PyObject *module)). This could be
used to manipulate the PyCLASS_Type structure before
registering it on Python.

	end
	Write the given custom code at the end of the class wrapper
initializer function (init_CLASS(PyObject *module)). The
code here will be executed after all the wrapped class
components have been initialized.

	modify-function
	native
	beginning
	Code here is put on the virtual method override of a C++
wrapper class (the one responsible for passing C++ calls to a
Python override, if there is any), right after the C++
arguments have been converted but before the Python call.

	end
	This code injection is put in a virtual method override on the
C++ wrapper class, after the call to Python and before
dereferencing the Python method and tuple of arguments.

	target
	beginning
	This code is injected on the Python method wrapper
(PyCLASS_METHOD(...)), right after the decisor have found
which signature to call and also after the conversion of the
arguments to be used, but before the actual call.

	end
	This code is injected on the Python method wrapper
(PyCLASS_METHOD(...)), right after the C++ method call,
but still inside the scope created by the overload for each
signature.

	shell
	beginning
	Used only for virtual functions. The code is injected when the
function does not has a pyhton implementation, then the code
is inserted before c++ call

	end
	Same as above, but the code is inserted after c++ call

	typesystem
	native
	beginning
	Write code to the beginning of the module .cpp file, right
after the #include clauses. This position has a similar
purpose as the native/beginning position on a wrapper
class .cpp file, namely write function prototypes, but not
restricted to this use.

	end
	Write code to the end of the module .cpp file. Usually
implementations for function prototypes inserted at the
beginning of the file with a native/beginning code
injection.

	target
	beginning
	Insert code at the start of the module initialization function
(initMODULENAME()), before the calling Py_InitModule.

	end
	Insert code at the end of the module initialization function
(initMODULENAME()), but before the checking that emits a
fatal error in case of problems importing the module.

7.3. Anatomy of Code Injection

To make things clear let’s use a simplified example of generated wrapper code
and the places where each kind of code injection goes.

Below is the example C++ class for whom wrapper code will be generated.

class InjectCode {
public:
 InjectCode();
 double overloadedMethod(int arg);
 double overloadedMethod(double arg);
 virtual int virtualMethod(int arg);
};

From the C++ class, Shiboken will generate a injectcode_wrapper.cpp file
with the binding code. The next section will use a simplified version of the
generated wrapper code with the injection spots marked with comments.

7.3.1. Noteworthy Cases

The type system description system gives the binding developer a lot of
flexibility, which is power, which comes with responsibility. Some modifications
to the wrapped API will not be complete without some code injection.

7.3.1.1. Removing arguments and setting a default values for them

A simple case is when a function have one argument removed, as when the C++
method METHOD(ARG) is modified to be used from Python as METHOD();
of course the binding developer must provide some guidelines to the generator
on what to do to call it. The most common solution is to remove the argument and
set a default value for it at the same time, so the original C++ method could be
called without problems.

7.3.1.2. Removing arguments and calling the method with your own hands

If the argument is removed and no default value is provided, the generator will
not write any call to the method and expect the modify-function - target/beginning
code injection to call the original C++ method on its own terms. If even this
custom code is not provided the generator will put an #error clause to
prevent compilation of erroneus binding code.

7.3.1.3. Calling the method with your own hands always!

If your custom code to be injected contains a call to the wrapped C++ method,
it surely means that you don’t want the generator to write another call to the
same method. As expected Shiboken will detect the user written call on the code
injection and will not write its own call, but for this to work properly the
binding developer must use the template variable %FUNCTION_NAME instead
of writing the actual name of the wrapped method/function.

In other words, use

<inject-code class="target" position="beginning | end">
 %CPPSELF.originalMethodName();
</inject-code>

instead of

<inject-code class="target" position="beginning | end">
 %CPPSELF.%FUNCTION_NAME();
</inject-code>

7.4. Code Injection for Functions/Methods

7.4.1. On The Native Side

Notice that this is only used when there is a C++ wrapper, i.e. the wrapped
class is polymorphic.

int InjectCodeWrapper::virtualMethod(int arg)
{
 PyObject* method = BindingManager::instance().getOverride(this, "virtualMethod");
 if (!py_override)
 return this->InjectCode::virtualMethod(arg);

 (... here C++ arguments are converted to Python ...)

 // INJECT-CODE: <modify-function><inject-code class="native" position="beginning">
 // Uses: pre method call custom code, modify the argument before the
 // Python call.

 (... Python method call goes in here ...)

 // INJECT-CODE: <modify-function><inject-code class="native" position="end">
 // Uses: post method call custom code, modify the result before delivering
 // it to C++ caller.

 (... Python method and argument tuple are dereferenced here ...)

 return Shiboken::Converter<int>::toCpp(method_result);
}

7.4.2. On The Target Side

All the overloads of a method from C++ are gathered together on a single Python
method that uses an overload decisor to call the correct C++ method based on the
arguments passed by the Python call. Each overloaded method signature has its
own beginning and end code injections.

static PyObject*
PyInjectCode_overloadedMethod(PyObject* self, PyObject* arg)
{
 PyObject* py_result = 0;
 if (PyFloat_Check(arg)) {
 double cpp_arg0 = Shiboken::Converter<double >::toCpp(arg);

 // INJECT-CODE: <modify-function><inject-code class="target" position="beginning">
 // Uses: pre method call custom code.

 py_result = Shiboken::Converter<double >::toPython(
 PyInjectCode_cptr(self)->InjectCode::overloadedMethod(cpp_arg0)
);

 // INJECT-CODE: <modify-function><inject-code class="target" position="end">
 // Uses: post method call custom code.

 } else if (PyNumber_Check(arg)) {
 (... other overload calling code ...)
 } else goto PyInjectCode_overloadedMethod_TypeError;

 if (PyErr_Occurred() || !py_result)
 return 0;

 return py_result;

 PyInjectCode_overloadedMethod_TypeError:
 PyErr_SetString(PyExc_TypeError, "'overloadedMethod()' called with wrong parameters.");
 return 0;
}

7.5. Code Injection for Wrapped Classes

7.5.1. On The Native Side

Those injections go in the body of the CLASSNAME_wrapper.cpp file for the
wrapped class.

// Start of ``CLASSNAME_wrapper.cpp``
#define protected public
// default includes
#include <shiboken.h>
(...)
#include "injectcode_wrapper.h"
using namespace Shiboken;

// INJECT-CODE: <value/object-type><inject-code class="native" position="beginning">
// Uses: prototype declarations

(... C++ wrapper virtual methods, if any ...)

(... Python wrapper code ...)

PyAPI_FUNC(void)
init_injectcode(PyObject *module)
{
 (...)
}

(...)

// INJECT-CODE: <value/object-type><inject-code class="native" position="end">
// Uses: definition of functions prototyped at ``native/beginning``.

// End of ``CLASSNAME_wrapper.cpp``

7.5.2. On The Target Side

Code injections to the class Python initialization function.

// Start of ``CLASSNAME_wrapper.cpp``

(...)

PyAPI_FUNC(void)
init_injectcode(PyObject *module)
{
 // INJECT-CODE: <value/object-type><inject-code class="target" position="beginning">
 // Uses: Alter something in the PyInjectCode_Type (tp_flags value for example)
 // before registering it.

 if (PyType_Ready(&PyInjectCode_Type) < 0)
 return;

 Py_INCREF(&PyInjectCode_Type);
 PyModule_AddObject(module, "InjectCode",
 ((PyObject*)&PyInjectCode_Type));

 // INJECT-CODE: <value/object-type><inject-code class="target" position="end">
 // Uses: do something right after the class is registered, like set some static
 // variable injected on this same file elsewhere.
}

(...)

// End of ``CLASSNAME_wrapper.cpp``

7.6. Code Injection for Modules

The C++ libraries are wapped as Python modules, a collection of classes,
functions, enums and namespaces. Shiboken creates wrapper files for all of
them and also one extra MODULENAME_module_wrapper.cpp to register the whole
module. Code injection xml tags who have the typesystem tag as parent will
be put on this file.

7.6.1. On The Native Side

This works exactly as the class wrapper code injections On The Native Side.

7.6.2. On The Target Side

This is very similar to class wrapper code injections On The Target Side.
Notice that the inject code at target/end is inserted before the check for errors
to prevent bad custom code to pass unnoticed.

// Start of ``MODULENAME_module_wrapper.cpp``

(...)
initMODULENAME()
{
 // INJECT-CODE: <typesystem><inject-code class="target" position="beginning">
 // Uses: do something before the module is created.

 PyObject* module = Py_InitModule("MODULENAME", MODULENAME_methods);

 (... initialization of wrapped classes, namespaces, functions and enums ...)

 // INJECT-CODE: <typesystem><inject-code class="target" position="end">
 // Uses: do something after the module is registered and initialized.

 if (PyErr_Occurred())
 Py_FatalError("can't initialize module sample");
}

(...)

// Start of ``MODULENAME_module_wrapper.cpp``

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

8. Sequence Protocol

Support for the sequence protocol is achieved adding functions with special names, this is done using the add-function tag.

The special function names are:

	Function name
	Parameters
	Return type
	CPython equivalent

	__len__
	PyObject* self
	Py_ssize_t
	PySequence_Size

	__getitem__
	PyObject* self, Py_ssize_t _i
	PyObject*
	PySequence_GetItem

	__setitem__
	PyObject* self, Py_ssize_t _i, PyObject* _value
	int
	PySequence_SetItem

	__contains__
	PyObject* self, PyObject* _value
	int
	PySequence_Contains

	__concat__
	PyObject* self, PyObject* _other
	PyObject*
	PySequence_Concat

You just need to inform the function name to the add-function tag, without any parameter or return type information, when you do it, Shiboken will create a C function with parameters and return type definied by the table above.

The function needs to follow the same semantics of the CPython equivalent function, the only way to do it is using the inject-code tag.

A concrete exemple how to add sequence protocol support to a class can be found on shiboken tests, more precisely in the definition of the Str class in tests/samplebinding/typesystem_sample.xml.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

9. Object ownership

One of the main things a binding developer should have in mind is
how the C++ instances lives will cope with Python’s reference count.
The last thing you want is to crash a program due to a segfault
when your C++ instance was deleted and the
wrapper object tries to access the invalid memory there.

In this section we’ll show how Shiboken deals with object ownership
and parentship, taking advantage of the information provided by the
APIExtractor.

9.1. Ownership basics

As any python binding, Shiboken-based bindings uses reference counting
to handle the life of the wrapper object (the Python object that contains the
C++ object, do not confuse with the wrapped C++ object).
When a reference count reaches zero, the wrapper is deleted by Python garbage
collector and tries to delete the wrapped instance, but sometimes the wrapped
C++ object is already deleted, or maybe the C++ object should not be freed after
the Python wrapper go out of scope and die, because C++ is already taking care of
the wrapped instance.

In order to handle this, you should tell the
generator whether the instance’s ownership belongs to the binding or
to the C++ Library. When belonging to the binding, we are sure that the C++ object
won’t be deleted by C++ code and we can call the C++ destructor when the refcount
reaches 0. Otherwise, instances owned by C++ code can be destroyed arbitrarily,
without notifying the Python wrapper of its destruction.

9.2. Invalidating objects

To prevent segfaults and double frees, the wrapper objects are invalidated.
An invalidated can’t be passed as argument or have an attributte or method accessed.
Trying to do this will raise RuntimeError.

The following situations can invalidate an object:

9.2.1. C++ taking ownership

When an object is passed to a function or method that takes ownership of it, the wrapper
is invalidated as we can’t be sure of when the object is destroyed, unless it has a
virtual destructor or the transfer is due to the special case
of parent ownership.

Besides being passed as argument, the callee object can have its ownership changed, like
the setParent method in Qt’s QObject.

9.2.2. Invalidate after use

Objects marked with invalidate-after-use in the type system description always are
virtual method arguments provided by a C++ originated call. They should be
invalidated right after the Python function returns.

9.2.3. Objects with virtual methods

A little bit of implementation details:
virtual methods are supported by creating a C++ class, the shell, that inherits
from the class with virtual methods, the native one, and override those methods to check if
any derived class in Python also override it.

If the class has a virtual destructor (and C++ classes with virtual methods should have), this
C++ instance invalidates the wrapper only when the overriden destructor is called.

One exception to this rule is when the object is created in C++, like in a
factory method. This way the wrapped object is a C++ instance of the native
class, not the shell one, and we cannot know when it is destroyed.

9.3. Parent-child relationship

One special type of ownership is the parent-child relationship.
Being a child of an object means that when the object’s parent dies,
the C++ instance also dies, so the Python references will be invalidated.
Qt’s QObject system, for example, implements this behavior, but this is valid
for any C++ library with similar behavior.

9.3.1. Parentship heuristics

As the parent-child relationship is very common, Shiboken tries to automatically
infer what methods falls into the parent-child scheme, adding the extra
directives related to ownership.

This heuristic will be triggered when generating code for a method and:

	The function is a constructor.

	The argument name is parent.

	The argument type is a pointer to an object.

When triggered, the heuristic will set the argument named “parent”
as the parent of the object being created by the constructor.

The main focus of this process was to remove a lot of hand written code from
type system when binding Qt libraries. For Qt, this heuristic works in all cases,
but be aware that it might not when binding your own libraries.

To activate this heuristic, use the –enable-parent-ctor-heuristic
command line switch.

9.3.2. Return value heuristics

When enabled, object returned as pointer in C++ will become child of the object on which the method
was called.

To activate this heuristic, use the –enable-return-value-heuristic

9.4. Common pitfalls

9.4.1. Not saving unowned objects references

Sometimes when you pass an instance as argument to a method and the receiving
instance will need that object to live indifinitely, but will not take ownership
of the argument instance. In this case, you should hold a reference to the argument
instance.

For example, let’s say that you have a renderer class that will use a source class
in a setSource method but will not take ownership of it. The following code is wrong,
because when render is called the Source object created during the call to setSource
is already destroyed.

renderer.setModel(Source())
renderer.render()

To solve this, you should hold a reference to the source object, like in

source = Source()
renderer.setSource(source)
renderer.render()

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 next

 	
 previous |

 	Shiboken 1.1.2 documentation

10. Words of Advice

When writing or using Python bindings there is some things you must keep in mind.

10.1. Duck punching and virtual methods

The combination of duck punching, the practice of altering class characteristics
of already instantiated objects, and virtual methods of wrapped C++ classes, can
be tricky. That was an optimistic statement.

Let’s see duck punching in action for educational purposes.

import types
import Binding

obj = Binding.CppClass()

CppClass has a virtual method called 'virtualMethod',
but we don't like it anymore.
def myVirtualMethod(self_obj, arg):
 pass

obj.virtualMethod = types.MethodType(myVirtualMethod, obj, Binding.CppClass)

If some C++ code happens to call CppClass::virtualMethod(...) on the C++ object
held by “obj” Python object, the new duck punched “virtualMethod” method will be
properly called. That happens because the underlying C++ object is in fact an instance
of a generated C++ class that inherits from CppClass, let’s call it CppClassWrapper,
responsible for receiving the C++ virtual method calls and finding out the proper Python
override to which handle such a call.

Now that you know this, consider the case when C++ has a factory method that gives you
new C++ objects originated somewhere in C++-land, in opposition to the ones generated in
Python-land by the usage of class constructors, like in the example above.

Brief interruption to show what I was saying:

import types
import Binding

obj = Binding.createCppClass()
def myVirtualMethod(self_obj, arg):
 pass

Punching a dead duck...
obj.virtualMethod = types.MethodType(myVirtualMethod, obj, Binding.CppClass)

The Binding.createCppClass() factory method is just an example, C++ created objects
can pop out for a number of other reasons. Objects created this way have a Python wrapper
holding them as usual, but the object held is not a CppClassWrapper, but a regular
CppClass. All virtual method calls originated in C++ will stay in C++ and never reach
a Python virtual method overridden via duck punching.

Although duck punching is an interesting Python feature, it don’t mix well with wrapped
C++ virtual methods, specially when you can’t tell the origin of every single wrapped
C++ object. In summary: don’t do it!

10.2. Python old style classes and PySide

Because of some architectural decisions and deprecated Python types. Since PySide 1.1 old style classes are not supported with multiple inheritance.

Below you can check the examples:

Example with old style class:

from PySide import QtCore

class MyOldStyleObject:
 pass

class MyObject(QtCore, MyOldStyleObject):
 pass

this example will raise a ‘TypeError’ due to the limitation on PySide, to fix this you will need use the new style class:

from PySide import QtCore

class MyOldStyleObject(object):
 pass

class MyObject(QtCore, MyOldStyleObject):
 pass

All classes used for multiple inheritance with other PySide types need to have ‘object’ as base class.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 previous

 	Shiboken 1.1.2 documentation

11. Shiboken module

11.1. Functions

	def isValid (obj)

	def wrapInstance (address, type)

	def getCppPointer (obj)

	def delete (obj)

	def isOwnedByPython (obj)

	def wasCreatedByPython (obj)

	def dump (obj)

11.2. Detailed description

This Python module can be used to access internal information related to our
binding technology. Access to this internal information is required to e.g.:
integrate PySide with Qt based programs that offer Python scripting like Maya™
or just for debug purposes.

Some function description refer to “Shiboken based objects”, wich means
Python objects instances of any Python Type created using Shiboken.

	
shiboken.isValid(obj)

	Given a Python object, returns True if the object methods can be called
without an exception being thrown. A Python wrapper becomes invalid when
the underlying C++ object is destroyed or unreachable.

	
shiboken.wrapInstance(address, type)

	Creates a Python wrapper for a C++ object instantiated at a given memory
address - the returned object type will be the same given by the user.

The type must be a Shiboken type, the C++ object will not be
destroyed when the returned Python object reach zero references.

If the address is invalid or doesn’t point to a C++ object of given type
the behavior is undefined.

	
shiboken.getCppPointer(obj)

	Returns a tuple of longs that contain the memory addresses of the
C++ instances wrapped by the given object.

	
shiboken.delete(obj)

	Deletes the C++ object wrapped by the given Python object.

	
shiboken.isOwnedByPython(obj)

	Given a Python object, returns True if Python is responsible for deleting
the underlying C++ object, False otherwise.

If the object was not a Shiboken based object, a TypeError is
thrown.

	
shiboken.wasCreatedByPython(obj)

	Returns true if the given Python object was created by Python.

	
shiboken.dump(obj)

	Returns a string with implementation-defined information about the
object.
This method should be used only for debug purposes by developers
creating their own bindings as no guarantee is provided that
the string format will be the same across different versions.

If the object is not a Shiboken based object, a TypeError is thrown.

 Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _images/boostqtarch.png
Python-Qt Bindings
describes how Qt classes and
functions will be exported to Python

Boost::Python
helper library to interface with CPython API
and expose C++ entities to Python

CPython Qta
API Libraries

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		Shiboken 1.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

index.html

 Navigation

 		Shiboken 1.1.2 documentation »

 Shiboken 1.1.2

 Shiboken is a plugin (front-end) for Generator Runner. It generates bindings for C++ libraries using CPython source code.

 Documentation

 		
 Contents

 for a complete overview

 FAQ

 answers for frequent asked questions

 Command line options

 explains the few flags used to change Shiboken behaviour

 Type System Variables

 describes the type system variables that could be used in user custom code

 Type Converters

 describes how to define type converters

 		
 Code Injection Semantics

 explains how custom code injection is interpreted by Shiboken

 Sequence Protocol

 support for python sequence protocol

 Object Ownership

 object ownership features

 Words of Advice

 Advice for binding developers and users.

 © Copyright 2009-2010, Nokia Corporation.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_images/converter.png
PythonTypel
PythonType2
PythonType3

Converter
Python -> C++

Converter
Python -> C++

PythonType

_static/ajax-loader.gif

_images/bindinggen-development.png
libgtbindgen — boostbackend —>, g;z';::,';ges)

o 2 1

typesystem injected code
(handwritten) (handwritten)

_static/file.png

_static/down-pressed.png

